130 research outputs found

    eLearning Cost Analysis of On-Premise versus Cloud-hosted Implementation in Sub-Saharan Countries

    Get PDF
    The cost of acquiring, managing, and maintaining ICT infrastructure is one of the main factors that hinder educational institutions in Sub-Saharan countries to adopt and implement eLearning. Recently, cloud computing has emerged as a new computing paradigm for delivering cost effective computing services that can be used to harness eLearning. However, the adoption of cloud computing in higher education in Sub-Saharan countries is very low. Although there are many factors that may influence educational institutions to adopt cloud services, cost effectiveness is often a key factor. Far too little is known on how much the use of cloud computing can be cost effective in delivering eLearning services. This paper compares the cost of hosting eLearning services between on-premise and cloud-hosted approaches in higher education, taking Tanzania as a case study. The study found that institutions can significantly reduce the cost of eLearning implementation by adopting a cloud-hosted approach. The findings of this study serve as a base for educational institutions seeking cost effective alternatives to implement eLearning in developing countries

    Tactile modulation of emotional speech samples

    Get PDF
    Copyright © 2012 Katri Salminen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedTraditionally only speech communicates emotions via mobile phone. However, in daily communication the sense of touch mediates emotional information during conversation. The present aim was to study if tactile stimulation affects emotional ratings of speech when measured with scales of pleasantness, arousal, approachability, and dominance. In the Experiment 1 participants rated speech-only and speech-tactile stimuli. The tactile signal mimicked the amplitude changes of the speech. In the Experiment 2 the aim was to study whether the way the tactile signal was produced affected the ratings. The tactile signal either mimicked the amplitude changes of the speech sample in question, or the amplitude changes of another speech sample. Also, concurrent static vibration was included. The results showed that the speech-tactile stimuli were rated as more arousing and dominant than the speech-only stimuli. The speech-only stimuli were rated as more approachable than the speech-tactile stimuli, but only in the Experiment 1. Variations in tactile stimulation also affected the ratings. When the tactile stimulation was static vibration the speech-tactile stimuli were rated as more arousing than when the concurrent tactile stimulation was mimicking speech samples. The results suggest that tactile stimulation offers new ways of modulating and enriching the interpretation of speech.Peer reviewe

    Augmenting VR/XR experiences using directional vibrotactile feedback and temperature variation using wearable devices

    Get PDF
    As virtual and mixed reality hardware systems become more mainstream, users are spending substantial amounts of time in simulated environments. Unlike the transition from desktop to mobile devices, VR/XR utilizes 360 wrap-around space which can be challenging to master even for experienced users. Tasks and tools commonly utilized in 2D environments within mobile and personal computing devices may not always be intuitive for VR space. For that reason, it is important to study and evaluate which common graphical user interface (GUI) techniques can be extended to VR/XR and how the efficiency of common 2D tools need to be improved within a 360-degree space. In this study authors explore six commonly used GUI tools and evaluate them in a VR environment. The research looks at how participants deconstruct 360-degree GUI tasks by identifying the location of the controls, navigating through the VR space to the relevant area and finally adjusting the GUI controls as instructed. The study looks at augmenting the interaction by providing vibrotactile navigation cues along with kinaesthetic and temperature-based feedback to complete the GUI tasks. Comparing to conventional visual only techniques that are currently being used in VR environments, vibrotactile, kinaesthetic and temperature feedback provided faster task completion times and more pleasant user experience. Participants also rated the additional feedback channels as more informative and less distracting within the virtual environment. Overall results show that participants preferred the novel use of haptic feedback for most of the GUI controls assessed within the study. Moreover, results also show that some more complex GUI controls (i.e., dial, menus, and lists) may not be best suited for VR 360-degree interaction, using visual only information channels, especially with non-robust inside-out hand tracking techniques. Additional research is needed to validate these results across different VR/XR hardware and simulated environments, however, current results point towards utilizing multi-modal and multi-technology interaction tools to create more immersive and intuitive 360 virtual spaces across a wide range of VR/XR devices.Peer reviewe

    Evaluation of haptic virtual reality user interfaces for medical marking on 3D models

    Get PDF
    Three-dimensional (3D) visualization has been widely used in computer-aided medical diagnosis and planning. To interact with 3D models, current user interfaces in medical systems mainly rely on the traditional 2D interaction techniques by employing a mouse and a 2D display. There are promising haptic virtual reality (VR) interfaces which can enable intuitive and realistic 3D interaction by using VR equipment and haptic devices. However, the practical usability of the haptic VR interfaces in this medical field remains unexplored. In this study, we propose two haptic VR interfaces, a vibrotactile VR interface and a kinesthetic VR interface, for medical diagnosis and planning on volumetric medical images. The vibrotactile VR interface used a head-mounted VR display as the visual output channel and a VR controller with vibrotactile feedback as the manipulation tool. Similarly, the kinesthetic VR interface used a head-mounted VR display as the visual output channel and a kinesthetic force-feedback device as the manipulation tool. We evaluated these two VR interfaces in an experiment involving medical marking on 3D models, by comparing them with the present state-of-the-art 2D interface as the baseline. The results showed that the kinesthetic VR interface performed the best in terms of marking accuracy, whereas the vibrotactile VR interface performed the best in terms of task completion time. Overall, the participants preferred to use the kinesthetic VR interface for the medical task.acceptedVersionPeer reviewe

    A Universal Volumetric Haptic Actuation Platform

    Get PDF
    In this paper, we report a method of implementing a universal volumetric haptic actuation platform which can be adapted to fit a wide variety of visual displays with flat surfaces. This platform aims to enable the simulation of the 3D features of input interfaces. This goal is achieved using four readily available stepper motors in a diagonal cross configuration with which we can quickly change the position of a surface in a manner that can render these volumetric features. In our research, we use a Microsoft Surface Go tablet placed on the haptic enhancement actuation platform to replicate the exploratory features of virtual keyboard keycaps displayed on the touchscreen. We ask seven participants to explore the surface of a virtual keypad comprised of 12 keycaps. As a second task, random key positions are announced one at a time, which the participant is expected to locate. These experiments are used to understand how and with what fidelity the volumetric feedback could improve performance (detection time, track length, and error rate) of detecting the specific keycaps location with haptic feedback and in the absence of visual feedback. Participants complete the tasks with great success (p < 0.05). In addition, their ability to feel convex keycaps is confirmed within the subjective comments.Peer reviewe
    • …
    corecore